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~~strac t

Let the positive definite matrix A have a tholesky factoriza ticm
A - RTR. For a given vector x suppose that A • A - ~~~ has aA tholesky factorizati on A a This paper considers an algorithm

~~ for cc~çut]ng ~ from R and x and an extension for r~~ vlng
a row from the QR factorizaticn of a regression prob1.~. It is
shown that the algorith m is stable in the pres ence of rotm ding
errors . However, it is also shown that the matrix ~ can be a
very ill-condi t ioned fis~ction of R and x.
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The Effects of Rounding Error on an Algorit hm ~~~~~~~~~
.

for tk wndat ing a tholesky Factorization B Y .
D1STh~

G. W. Stewart

1. Introduction —

Let A be a positive def inite matrix of orde r p. Then A can

be fac tored in the form

A = R TR

where R is upper triangular . This “Cholesky fac torization ” of A is

talique up to the signs of the rows of R (e.g. see 161

in this paper we shall be concerned with the fol1owi~~ probl em.

Given a p-vector x and the matrix R find the Cholesky factorizatio n of

the matrix

(1.1) A r A ~~~XX
T ,

where it is assumed that x is such that A is positive definite . We

shal l refer to this problem as the downdating probl em.

An inçortant application of downdating is the rmwval of an observa-

tion from a linear regress ion problem that is being solved by means of the

QR factorization . Specifically , consider the problem of minimizing

-

where X is an n x p matrix of rank p and It ’ H denotes the usual

Euclidean vector norm defined by Qxfl 2 
- ~~~ It is well known that X

__________________________ -. Tfl~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - -



- 2 -

can be factored in the form

X ~ QR

where R is upper triangul ar and Q has orthonormal columns , i.e.

QTQ - I. If z is defined by

z = QTr

then the solution of the regression problem is given by

— R 1z

and the residual stan of squares by

2 
— 11y112-11 z112

When n is large, it may be impossible to retain the elements of

the n x p matrix Q in the main memory of the ccm~uter performing the

calculation. In this case one may compute R, z, and p with~it expli-

citly forming Q [3,5]. Although this suffices for the computation of

p, one is left with the problem of performing a variety of statistical

cc~~utations when one knows only R, z , and p. (It is interesting

to note that aficiandos of the normal equations have the same problem;

they caiulot reta in X in main memory and niist work instead with xTx,

xT~, and 11y112 [1] .)
(~ e frequently occurring requirement is to remove an observation

from the regression , that is to reiawe a row ~T from X and the corr e-
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sponding component i from y. Without loss of generality we may

suppose that ~T is the last row of X , so that X can be written

in the form

It follows that

(1.2) - xTx - 
1’

Now

xTx a RTQTQR - RTR

which shows that the triangular par t of the QR factorization of X is

the Cholesky factor of xTx. Likewise L the triangular part of the QR

factorization of ~, is the Cholesky fac tor of ~TL Comparing (1.1) and
• (1.2) , we see that the problem is one of downdating the Cholesky factori-

zation of xTx. There is , of course , more to it than this , for we nust

also cai~ ute the downdated vector ~ and residual stan of squares

In this paper we shall give a rounding error analysis of an algorithm

for cui~uting ?(, z , and 7. Our conclusions are that the algorithm is

remarkably stable ; however , this stability does not guarantee that the

results are accurate , for the downdating problem can be quite ill condi-

tioned. We begin with a discussion of this ill-conditioning, before going

on to a description of the algorithm and the subsequent error analysis.
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2. The condition of the downdating problem

Let A, A, and x be as in the prev ious section with A having

a tholesky factorization RTR. Let A have the cholesky factorization

In applications we will of course not know A and B. Rather we

will be given R and x and be required to compute L Consequently,

we are interested in assessing the effects of perturbations in R and

x on

We shall first consider a perturbation E in R. Assume that the

matrix (R+E) T (R+E) - has a Cholesky factor Ft . We wish to assess

the size IR -~Jl, where here I’ll denotes the spectral matrix norm

(6, 71. We begin by comparing the singular value s [61 of ~ and k,
which we denote by 

~~ ~ a2 ~ ... and a1 ~ a~ > 
~ ~~~~. Now

- (R+E) T (R+E) -

RTR - + RTE + ETR + ETE

. R ~~~+ R TE + E TR + E TE

Since ~~~~~~~~~~~~~~~~ . . ,~~~~~ are the eigenvalu es of and likewise ~~~~ . . ,~~~~~

are the eigenvalues of ~~~ it follows from the classical perturbation

theory for eigenvalues of synunetric matrices [6 , 71 that for i • 1, 2 , . . .  ,p

I ~ ~-o ~ II RTE+ETR+ETPJI 
~
‘ l~ 

+ 2

where a1 - II RH and e - h Ell . In particular

_ _ _  _ _ _  _ _ _ _ _ _  • •
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/;. \2 
~~
,

1 -  ..2 5 1 +
CYj

and it follows from the inequality 1 - ,‘r+ x I ~ l x i  that

~~
l&+ 6 

-(2.1) 
~i - S aj  5 +

oi

Now

fi R - nit ~~ 
maxJ~~ -

hence (2.1) has the disturbing implication that II~-~ can be as large as

(2o 1e+e 2)/~~. In particular if &~ s /2o1e+e
2, we canno t guarantee that

and agree in any significant figures.

Casting the results in terms of relative errors (e.g. rounding errors)

may make this clearer . Suppose that the original matrix R has nonzero

elements all of about the same size, and these elements are perturbed by

a relative error of order eM. Then in the above , e ~~ e~ JRIJ - 

~i’l’ 
SO

• that if

(2.2) i5~ç

may be obliterated by the error in R. The square root has the 1mph -

cation that in downdating one cannot tolerate a spread of singular values

of half the c~ çutationa1 precision without losing all precision in the

a llest singul ar value.
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Perturbations in x have much the same effect. If

- RTR - (x+f) (x+ f) T ,

then a repetition of the above argument shows that

~~~~~
. -

~~~
. I < 2J 1 xJ J 1J 9+It fll

2

It should be observed that the dependence of the bound s on

can be removed by the following argument. The der ivation of (2.1) is

symmetric in and &~~ . Consequently we may replace the denominator

in (2 .1) by ~~ max~~~,a~}. But we also have the bound ~ —~~I s 
~
Li

Combining the two bounds gives

(2 .3) ~~~ ~ (2o1e+~
2)1’13

In computational practice it is unl ikely that both and will be

less than (2a 1e+e 2) ”~
2 , so that the cube root in (2.3) is effectively

a square root.

That the bound (2.1) is realistic can be seen by considering the

scalar case p - 1. This case actually arises in pra ctice ; for in the

regression problem mentioned in §1, X becomes an n—vector , x becomes

a component of x, and R becomes II XII . Thus the downdating problem

becomes: given the norm of a vector fir*d the new norm after a c~ çonent

has been removed from the vector. The results of this section have the

following implications for downdating norms in t-digit arithmetic . If

ever a sequence of downdates reduces the norm by a factor greater than

the results can be expected to be completely spurious.
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3. The algorithm

The algorithm described in this section is an extension of one that

has appeared in [2 , 5].

We shall use the notation introduced in §1. We assume that

the reader is familiar with computations with plane rotations (for details

see [6] or [7]). In order that the several computationa l steps of the

algorithm will not be lost in the deriva tions , we proceed imedia tely to

a description of the entire algorithm . 
-

lye the system aTR =

a ll ~ 1, report RTR - indefinite and stop .

. Compute ci = Il- fl a il2

• 4. For i = p,p-l,... ,1 determine plane rotations in the

(i ,p+l) plane such that

Ul U 1U ( )  = U)
5. Calculate

(~T) 
= u 1. . . u ~~1u (R).

To justify this algorithm, we first show tha t the condition fl a il < 1

is necessary and sufficient for RTR - ~~T to be positive definite. In

fact

(3.1) (RTR~xxT) RT(I~aaT)R .

Now the eigenvalues ~ i~~aT are 1 - h ail2 of multiplici ty unity and 1

of imiltiphicity p-i. It follows that i~aa
T, and hence ~~~ is positive
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definite if and only if flail 2 < 1.

Let Q - U1. . Then

Ia R\ / 0  ~~\
(3.2) ) T 1  ‘\a 0/ \P b /

in which we must verify that ~ - 1 and b - x. Since QTQ = I , if each

side of (3.2) is multiplied by its transpose, the result is

/ 1 aTR \ (p 2 pbT

~R
Ta RTR )  ~\pb ~ j~+bb

T

It follows inmediately that ~ — 1, b x, and

RTR - ~~~ +

But it is easily seen from the form of the plane rotations U~ that T~
is upper triangular. Hence i~ is the downdated (2iolesky factor .

In applications to regression problems, it is necessary to compute

~ and ~. One way of approaching this is to observe that the Cholesky

factor of (X ,y) T (X ,y) is

z
(3.3) (

p

Thus the new decomposition can be determined by rmi~ving (xT i) from (3.3) .

However we prefer to use a differ ent algorithm for two reasons . First if

one has several vectors y, the algorithm must be repeated for each one ,

I— - .  -~~~~~~~~ -~~ ~~ . ~~~~~~~~
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wi th considerable diseconomies in time and storage . Second, the aug-

merited downdating may fail , even though R by itself can be downdated ,

and it is desirable not to confound these sources of failure .

In the description of our proposed algorithm below, c~ and S
i

are the cosines and sines defining the plane rotations U~.

1. Set f~0 ~
2. For i = 1, 2 , . .  . ,p compute

=

(3.4)
= si

-
~i 

+ 
~~~~

3. I f 9 ~~ .~~~stoP

4

To show that these formulas indeed produce the required ~ and 7,,
we first observe that they are well defined , since a i’ 0 implies that

no c1 can be zero . Now the two relations in step two of (3.4) are equi-

valent to

• (3.5) (::~) 
(~~ç~) .

It follows that

(Z ) a u T . . . U ~u~
(

z ) a Q T( z)~

whence 

~~~~ ~~~
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/R z \  I a  ~
\ 0  fl / 1

It then follows that

fR z\T IR z\ ~~~~~~ ~Tj~1~

~\0 4 ~ 4 a 
T~~~T ~

T
~+

2

But ~~ + p
2 

- ~~ + 2 + 2; hence

(: :)T
C :) - (~~~~~~T= (~ ~

)T(
: ~~~~

and ~ and 7, comprise the last column of the Cholesky fac tor of the

downdated augmented system.

We note that if ~- p , then p is not large enough to acconmodate

the decrease in the residual due to the deletion of (xT ,l) , and the algo-

ritlun should be stopped.

• — - -~~~~~~~~ •~~~~~ ~~: •- ~~~~~~
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4. The effects of rounding erro r

In this section we shall adopt the conventions and assi.m~ tions usual

in floatin g-point round ing-error analyses . If e is an arithmetic expre s-

sion with a specified order of evaluation , 6t( e) will denote the result

of evaluating e in floating -point arithmetic. We shall assume that
floating-point multiplication and division satis fy

~t (aob) = aob(l +c), o =

where

~

Here e M is the rounding unit of the computer in question (i.e. C M is
approximately the largest number e for which £t (1+e) - 1). We assume

j  addition and subtra ction satis fy

a a t ]+e 1~ ~

~~~ where 
~~~ 

, l e 2 l 
~ 

CM. Finally we assume that

— (1+~)1~ ,

where again I C I  
~ 

CM. As is customary, we ignore problems of overflow and
underf low .

In order to simplify our bounds we shall freely discard higher order
terms in CM. For example (l+CM) (heM) will be approxi mated by 1 + 2eM.
Although our results will no longer have the status of theorems, their
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derivation will be considerabl y less cluttered . t~breover , if p is

sufficientl y small , say PC M < .01 , then the bounds can be made ri gorous

by mult iplying by a factor near unit y .

We begin with the computation of a. Here , and in what follows ,

all quantities stand for their computed , not their true , values . The

solution of triangular systems has been analyzed elsewhere (6 ,7], and

we merely qt~~te the results. The vector a satisfies

(4.1) aT (R+F) =

where

(4.2) (j+2 ) I r . . I & M .

It follows that if r~ and f~ denote the j-th cohmiis of R and F , then

(4.3) llf~ll < v’j (j+2) llr .f l e M

We tur n now to the computation of a. If we compute a2 in the

order 1 - (a~+a~+ . . .+a~) we have

2 
— (l+e 0) - a~(1+e1) - a~(1+e 2) -...- a~(1+e~)

where (e 0~ 5 CM and 
~ 

(p_ i+3) CM (i�l). Hence, since lia lI~ < 1,

(4 .4) a • (l+v i)/~._ iI a li Z .~r 2

where

k11 ~~ 
eM~ 

112 1 
~~ 

(p’3)e~

Al
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The computation and application of plane rotations has been analyzed

in detail by Wilkinson [6], where he shows that there ar e exact rotations
U1, U2 , .  ..,ü~ such that for any vector v

• ~ce(u1.. .U~~1U~v) I51. . .O ~, 1 O~,v + g

where

(4 .4) lId ~ 6pHvIk,~

Here - we have suppressed some second order terms that account for the slow
growth in a bound on 1 1.. .U~~1U~v It.

Let

(4.5) — U1~~ Up4Op

We firs t consider the application of ~ to the vector (aT,a) T. From the
results quoted above

(4.6) (a ’~ (g0’
\

\a/  \ P/
where

11g011 <6p~~(I~aII
2+a2)112

Now from (4.4)

nail 2 
+ a2 

— ~~~~~ + (l+ r1)
2 (1~IIaII2.t2)

‘ 1 + 2ll a O t1~ + 12

Hm~ce
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(4.7) 
~

and

(4.8) — (DaJ I 2+a 2 -llg~ I 2)~
’2

— 1 +

where

(4 . 9) 1a 01 < CM

We next consider the application of ~ to (r~, O)T . We have

IrT\ / 1 . +g.\
(4.10) ~ 1— ( ~ ~ )\ 0 /  \~~j

4
~f j /

where

(4 .11) If~~lI~ F~rjI ~. 
6PII r~IIe~

Here is the ccm~ut~ 3 value. We wish to find a bound on I Xj 
-

~~~~ 

I .

Since ~ is orthogonal, we have from (4.6) , (4.8) and (4.10) that

aTrj - (4,~
) (~ j

+gj

- + + + g~~~
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But from (4.1)

aTr. - x. + aTf.

Hence 

~

x
i 

- 
•
~ + 

~
. + g~~ - aTf~

Since up to terms of order eM~ IP r~H H ~~~~~~ we have from (4 .3) ,

(4.7), (4.9), and (4.11) that

x
i 

- - aj

where

(4.12) Iaj , ~ [ 
+ P/3 (j+2) ]II rJ J I C M

To stmunarize we have s1~~n that there is an orthogonal matrix ~
• such that

• J R \  rR+~ \
Q( 1 ’ T T I ’
\O/ \x +s~/

where G and s satisfy (4.11) and (4.12). In other words, the computed

downdated Cholesky factor R is very near the factor obtained by downdat-

ing with a slightly perturbed vector x. The error G in ~ is unimportant ,

except as it may affect subsequent downdates; however, the results of §2
show that the error s in x may seriously affect the accuracy of k.

Two other points. First, the higher order term in (4.12) is due to

the solution of the triangular system aTR ~~ The factor (J+2) can be



r
- 16 -

ren~ved fran this term by acctmiilating inner products in double precision;

however , in practice this is unnecessary , since the term does not dominate

its ccmpanion (and this only in cohati p) until p — 40 , and it is not yet

double when p - 150.

Second, the bounds are given cohuim by coli.mm and hence are indepen-

dent of colij ini scaling. This is not surprising, since the computations

in each coltimi are independent of one another .

We turn now to the analysis of the errors involved in downdating ~.
Define

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ,

so that from (3.5)

• ~~(U~ w1 1 ),  i — l ,2 , . . . ,p

However, the eval*ation of ~z(U
Tw~~1) is not the straightforward one implied

by (3.5) ; rather it is the indirect one implied by the forimilas in step 2

of (3.4), which we now analyze. We have

(z. (l+ a1)+s ~~~~~ -1 (1+e 2) (l+C 3)
— 1 i i  (lie )

i Cj 4

where is~I ~ e~. fliis

Zj 
— c

~
!j (1+eiY ’(l+e4)

~~ 
- s~~~_1 (1+e2) (l+e 3)( l+e 1)~~ ,

and it follows that

• c~t~(l+e 5) - 
~~~~~~~~~~
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where ~e I < Ze and Ic I < 3e . Likewise5~~~ M 6~~~ M

= Sj~t1(l+e 7) + c~ii~..1(l+c8) ,

where k7l~k8I <

These results show that as far as rounding errors are concerned,

the formulas in (3.4) are equivalent to the direct application of (3.5),

with the exception that the term e 6 has the bound 3cM instead of

This means tha t the error analysis of Wilkinson cited above goes

through nuitatis mutandis, with the resul t that the right hand side of the

bound (4.4) becomes 7pJJ vIi e~1. Hence

• QT~ + g

where gil ~, 7p11w011 CM. Since ( is orthogonal,

/z~ /‘~+h\

~( 
~• (

\~i/ \11r/

where

L 2 2111411 ,It I ~ 7p(ll~H ‘ii

Thus the ccmq uted ~ is very near the vector that would be obtained

by downdating z with a slightly perturbed 1. It should be noted that

the transformation ~ is the same as the one defined by (4 . 5) in the

previous analysis.

It goes without saying that these bounds are an extreme over-estimate

of the errors that would be encountered in practice . None the less they



- 18 -

suffice to demonstrate the exceptional stability of the algorithm. Any

inaccuracies observed in the results cannot be attributed to the algorithm;

they must instead be due to the ill-conditioning of the problem. This

raises the question : does the algorithm provide some way of detecting

ill conditioning? We shall answer this question in the next section.
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5. The mean ing of ilafi

It is a consequence of the resul ts of §2 that ill conditioning

in the downdating problem is associated with small singular values in

R. In §3 it was shown that if fl a il • 1, then R is singular , i.e.

= 0. It is therefore reasonable to conjecture that values of a

near unity will be associated with ill-conditioned probl~~~ and vice
versa. However , j ust as the determinant is a poor indicator of the

condition of a matrix , the value of II all may be a poor Indicator of the

condition of the downdating proble m. In this section we shal l show that

the value of h ail will reliably signal trouble.

We first show that the value of h alf cannot cry wolf; if it is

near un ity, then the problem must be ill conditioned. It follows fran

(3.1) and the fact that the smallest eigenvalue of I - aaT is 1 - h alt 2

that the smallest eigenvalue of is

Xmin (RTI) — hIRhl~(l-Ilahl
2)

Since - X ( R TI)

It follows from the discussion surrounding (2 .2) that if 1 - 
h alf

2 — O(e&

then R can be expected to lose about half its accuracy .

We cannot show that a 11 value of iz~lies that Hall is near

unity. However we can show that if any singular value of R is reduced

in the downdating by a significant factor , then h ail must be near unity.

— •_
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We start by develop ing an expression for h ail 2 . First

f alf 2 - xTR~~R Tx - XT (RTRY 1X

T T  T - l- x ( R R+xx ) x

- xT~~~(I+~~T ~~~~~~

Set

b - R Tx

so that

11a 11 2 — bT(I+bbTy]
b

Since b is an eigenvector of I + bbT corresponding to the eigenvalue

1 + 11b 11 2 , it follows that

(5.1) (h alf • ______

1+11 bhl

We next obtain a lower bound on 11b11 2 . Let be the right singular

vector corresponding to 
~i and let~ P~ - ~~~~~~~~~~~~~~ 

Then if ~~~~ 0

If V.x lh
(5.2) hlb ll — f I R L XII ~ aj

&at from the minimax theorems [6,7]

< R~/
TRT

~~? I I  ~ + H~~X~~~ II

— + hlV~xil
2
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Hence

(5.3) ii~~xil 2 
~ -

Combining (5.1) , (5.2) , and (5.3) gives

2 (a ./~ .) 2
~l

fl a il ~
+1

Thus a large value of (a1/a~
)2 will be reflected by the nearness of fl ail 2

to unity .
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Jor ~j iven vector x suppose that A’ • A - xx has a Q~ 1e~ cy factor izat ion

- R”R This paper considers an algor ithm for caçuting R ’ from R and
x and an extension for r~tvvthg a row from the QR factorizatian of a regres
sion problem. It is shown that the algorit hm is stable in th~~presence of
rounding errors. However, it is also shown that the matrix R’ can be a
very ill-conditioned function of R and x.
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